Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Environ Au ; 3(5): 319-335, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743953

RESUMO

In May 2021, the M/V X-Press Pearl container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship's underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions. Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles exposed to heat and combustion, burnt plastic pieces (pyroplastic), and oil-plastic agglomerates (petroplastic). An unresolved question is whether the 1600+ tons of spilled and recovered plastic should be considered hazardous waste. Due to the known formation and toxicity of combustion-derived polycyclic aromatic hydrocarbons (PAHs), we measured 20 parent and 21 alkylated PAHs associated with several types of spilled plastic. The maximum PAH content of the sampled pyroplastic had the greatest amount of PAHs recorded for marine plastic debris (199,000 ng/g). In contrast, the sampled unburnt white nurdles had two orders of magnitude less PAH content. The PAH composition varied between the types of spilled plastic and presented features typical of and conflicting with petrogenic and pyrogenic sources. Nevertheless, specific markers and compositional changes for burning plastics were identified, revealing that the fire was the main source of PAHs. Eight months after the spill, the PAH contents of sampled stray nurdles and pyroplastic were reduced by more than 50%. Due to their PAH content exceeding levels allowable for plastic consumer goods, classifying burnt plastic as hazardous waste may be warranted. Following a largely successful cleanup, we recommend that the Sri Lankans re-evaluate the identification, handling, and disposal of the plastic debris collected from beaches and the potential exposure of responders and the public to PAHs from handling it. The maritime disaster underscores pyroplastic as a type of plastic pollution that has yet to be fully explored, despite the pervasiveness of intentional and unintentional burning of plastic globally.

2.
Mar Pollut Bull ; 181: 113880, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843160

RESUMO

The TRopical Oil Pollution Investigations in Coastal Systems (TROPICS) experiment, conducted on the Caribbean coast of Panama, has become one of the most comprehensive field experiments examining the long-term impacts of oil and dispersed oil exposures in nearshore tropical marine environments. From the initial experiment through more than three decades of study and data collection visits, the intertidal and subtidal communities have exhibited significantly different impact and recovery regimes, depending on whether the sites were exposed to crude oil only or crude oil treated with a chemical dispersant. This review provides a synopsis of the original experiment and a cumulative summary of the results and observations, illustrating the environmental and ecosystem trade-offs of chemical dispersant use in mangrove, seagrass, and coral reef environments.


Assuntos
Poluição por Petróleo , Petróleo , Região do Caribe , Recifes de Corais , Ecossistema
3.
Toxicol Rep ; 9: 656-662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399216

RESUMO

The potential impacts of sub-surface hydrocarbon plumes to deep-water column micronekton are an important consideration in a more complete understanding of ecosystem effects resulting from deep-sea oil spills. However, evaluating toxicity in these organisms presents multiple challenges, and the use of a shallow-water proxy species allows comparison and validation of experimental results. This study thus examined the suitability of the peppermint shrimp, Lysmata boggessi, as an experimental proxy for ecologically important deep-sea zooplankton/micronekton in hydrocarbon toxicity assays. This crustacean species occurs in shallow coastal marine environments throughout the western Atlantic, Caribbean and Gulf of Mexico, is similar in size to the mesopelagic organisms previously tested and is readily available via commercial aquaculture. The effects of 1-methylnaphthalene and fresh Macondo oil (MC252) on L. boggessi were assessed in 48-h constant-exposure toxicity tests, and acute thresholds were compared to previously determined LC50s for oceanic mid water Euphausiidae, Janicella spinacauda, Systellaspis debilis, Sergestes sp., Sergia sp. and the mysid shrimp Americamysis bahia. Acute thresholds and the calculated critical target lipid body burden (CTLBB) for the shallow-water L. boggessi were comparable to the deep-water species tested, suggesting that L. boggessi may be a suitable proxy for some mesopelagic micronekton species in acute hydrocarbon exposures.

4.
PLoS One ; 17(2): e0263420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196352

RESUMO

Marine microbial communities play an important role in biodegradation of subsurface plumes of oil that form after oil is accidentally released from a seafloor wellhead. The response of these mesopelagic microbial communities to the application of chemical dispersants following oil spills remains a debated topic. While there is evidence that contrasting results in some previous work may be due to differences in dosage between studies, the impacts of these differences on mesopelagic microbial community composition remains unconstrained. To answer this open question, we exposed a mesopelagic microbial community from the Gulf of Mexico to oil alone, three concentrations of oil dispersed with Corexit 9500, and three concentrations of Corexit 9500 alone over long periods of time. We analyzed changes in hydrocarbon chemistry, cell abundance, and microbial community composition at zero, three and six weeks. The lowest concentration of dispersed oil yielded hydrocarbon concentrations lower than oil alone and microbial community composition more similar to control seawater than any other treatments with oil or dispersant. Higher concentrations of dispersed oil resulted in higher concentrations of microbe-oil microaggregates and similar microbial composition to the oil alone treatment. The genus Colwellia was more abundant when exposed to multiple concentrations of dispersed oil, but not when exposed to dispersant alone. Conversely, the most abundant Marinobacter amplicon sequence variant (ASV) was not influenced by dispersant when oil was present and showed an inverse relationship to the summed abundance of Alcanivorax ASVs. As a whole, the data presented here show that the concentration of oil strongly impacts microbial community response, more so than the presence of dispersant, confirming the importance of the concentrations of both oil and dispersant in considering the design and interpretation of results for oil spill simulation experiments.


Assuntos
Lipídeos/farmacologia , Microbiota/efeitos dos fármacos , Microbiota/genética , Poluição por Petróleo/efeitos adversos , Água do Mar/química , Água do Mar/microbiologia , Alcanivoraceae/genética , Alteromonadaceae/genética , Biodegradação Ambiental/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Golfo do México , Hidrocarbonetos/metabolismo , Marinobacter/genética , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
5.
Environ Res ; 204(Pt A): 111893, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34419473

RESUMO

BACKGROUND: Given the time and monetary costs associated with traditional analytical chemistry, there remains a need to rapidly characterize environmental samples for priority analysis, especially within disaster research response (DR2). As PAHs are both ubiquitous and occur as complex mixtures at many National Priority List sites, these compounds are of interest for post-disaster exposures. OBJECTIVE: This study tests the field application of the KinExA Inline Biosensor in Galveston Bay and the Houston Ship Channel (GB/HSC) and in the Elizabeth River, characterizing the PAH profiles of these region's soils and sediments. To our knowledge, this is the first application of the biosensor to include soils. METHODS: The biosensor enables calculation of total free PAHs in porewater (C free), which is confirmed through gas chromatography-mass spectrometry (GC-MS) analysis. To determine potential risk of the collected soils the United States Environmental Protection (USEPA) Agency's Regional Screening Level (RSL) Calculator is used along with the USEPA Region 4 Ecological Screening Values (R4-ESV) and Refined Screening Values (R4-RSV). RESULTS: Based on GC-MS results, all samples had PAH-related hazard indices below 1, indicating low noncarcinogenic risks, but some samples exceeded screening levels for PAH-associated cancer risks. Combining biosensor-based C free with Total Organic Carbon yields predictions highly correlated (r > 0.5) both with total PAH concentrations as well as with hazard indices and cancer risks. Additionally, several individual parent PAH concentrations in both the GB/HSC and Elizabeth River sediments exceeded the R4- ESV and R4-RSV values, indicating a need for follow-up sediment studies. CONCLUSIONS: The resulting data support the utility of the biosensor for future DR2 efforts to characterize PAH contamination, enabling preliminary PAH exposure risk screening to aid in prioritization of environmental sample analysis.


Assuntos
Técnicas Biossensoriais , Desastres , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
7.
J Health Pollut ; 11(29): 210308, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33815906

RESUMO

BACKGROUND: Hurricane Harvey made landfall along the Texas Gulf Coast as a Category 4 hurricane on August 25, 2017, producing unprecedented precipitation that devastated coastal areas. Catastrophic flooding in the City of Houston inundated industrial and residential properties resulting in the displacement and transfer of soil, sediment, and debris and heightening existing environmental justice (EJ) concerns. OBJECTIVES: The primary aim of this study was to evaluate the presence, distribution, and potential human health implications of polycyclic aromatic hydrocarbons (PAHs) in a residential neighborhood of Houston, Texas following a major hurricane. METHODS: Concentrations of PAHs in 40 soil samples collected from a residential neighborhood in Houston, Texas were measured. Spatial interpolation was applied to determine the distribution of PAHs. Potential human health risks were evaluated by calculating toxicity equivalency quotients (TEQs) and incremental excess lifetime cancer risk (IELCR). RESULTS: Total priority PAH concentrations varied across samples (range: 9.7 × 101 ng/g-1.6 × 104 ng/g; mean: 3.0 × 103 ng/g ± 3.6 × 103 standard deviation). Spatial analysis indicated a variable distribution of PAH constituents and concentrations. The IELCR analysis indicated that nine of the 40 samples were above minimum standards. CONCLUSIONS: Findings from this study highlight the need for fine scale soil testing in residential areas as well as the importance of site-specific risk assessment. COMPETING INTERESTS: The authors declare no competing financial interests.

8.
Int J Legal Med ; 135(3): 1005-1014, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33410923

RESUMO

The attraction and colonization of vertebrate remains by carrion-associated arthropods are processes largely governed by olfaction. As remains decompose, they emit a bouquet of volatile organic compounds (VOCs), which in part originate from endogenous and exogenous microbes surrounding the carcass or from the carcass itself. The composition and concentration of VOCs are influenced by the presence and abundance of microbial species and arthropods. Blowfly species, such as Cochliomyia macellaria, play a critical role in nutrient recycling and the decomposition process of carrion. Gas chromatography-mass spectroscopy analysis was used to identify and classify volatile emissions from insect-colonized (with C. macellaria) and uncolonized rat carcasses, as well as a standard Gainesville diet, over a 10-day period. There were significant differences in composition and abundance of compounds present in each treatment, with significant effects of time, and different compound composition between treatments. Notable indicator compounds included, but were not limited to, indole, dimethyl disulfide, and dimethyl trisulfide. A high compound richness, and a low compound diversity, was detected over the 10-day period. The indicator compounds detected across all treatments were found to be of microbial origin, highlighting the importance of microbes in decomposition processes and arthropod attraction to carrion. This study also discusses the significant impact of necrophagous arthropods to the VOC profile of carrion. The results of this study provide insight into the changes in decomposition VOCs over time, with an explanation of compounds in high concentration known to be attractive to carrion-colonizing arthropods.


Assuntos
Restos Mortais/química , Calliphoridae , Entomologia Forense , Compostos Orgânicos Voláteis/análise , Animais , Restos Mortais/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Microbiota , Mudanças Depois da Morte , Ratos , Compostos Orgânicos Voláteis/classificação
9.
Environ Sci Pollut Res Int ; 28(6): 6758-6770, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33009611

RESUMO

Heavy metal exposure in humans and animals commonly occurs through the consumption of metal-contaminated drinking water and food. Although many studies have focused on the remediation of metals by purification of water using sorbents, limited therapeutic sorbent strategies have been developed to minimize human and animal exposures to contaminated water and food. To address this need, a medical grade activated carbon (MAC) and an acid processed montmorillonite clay (APM) were characterized for their ability to bind heavy metals and mixtures. Results of screening and adsorption/desorption isotherms showed that binding plots for arsenic, cadmium, and mercury sorption on surfaces of MAC (and lead on APM) fit the Langmuir model. The highest binding percentage, capacity, and affinity were shown in a simulated stomach model, and the lowest percentage desorption (< 18%) was shown in a simulated intestine model. The safety and protective ability of MAC and APM were confirmed in a living organism (Hydra vulgaris) where 0.1% MAC significantly protected the hydra against As, Cd, Hg, and a mixture of metals by 30-70%. In other studies, APM showed significant reduction (75%) of Pd toxicity, compared with MAC and heat-collapsed APM, suggesting that the interlayer of APM was important for Pb sorption. This is the first report showing that edible sorbents can bind mixtures of heavy metals in a simulated gastrointestinal tract and prevent their toxicity in a living organism. Graphical abstract.


Assuntos
Arsênio , Mercúrio , Metais Pesados , Adsorção , Animais , Bentonita , Cádmio , Carvão Vegetal , Argila , Humanos , Chumbo
10.
Mar Pollut Bull ; 162: 111872, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33256967

RESUMO

Hurricane Harvey led to a broad redistribution of sediment throughout Galveston Bay and the Houston Ship Channel (GB/HSC), but the resulting changes in chemical contaminant distributions have yet to be characterized. To address this question, we collected and analyzed post-Harvey sediment for concentrations of the EPA 16 Priority Pollutant polycyclic aromatic hydrocarbon (PAHs), determining the extent to which the spatial distribution and sourcing of contaminants may have changed in contrast to historical surface sediment data (<5 cm) from the National Oceanic Atmospheric Administration (NOAA) available for the years 1996-2011. We found a small, but detectable increase from pre- to post-Harvey in PAH concentrations, with PAH diagnostic sourcing indicating combustion origins. Of the detected PAHs, none exceeded Sediment Quality Guideline values. Overall, we have added to the understanding of PAH spatial trends within the GB/HSC region, and developed a reference PAH baseline to inform future studies.


Assuntos
Tempestades Ciclônicas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Baías , Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
11.
Environ Sci Pollut Res Int ; 27(36): 45270-45281, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32789631

RESUMO

Deep-water column micronekton play a key role in oceanic food webs and represent an important trophic link between deep- and shallow-water ecosystems. Thus, the potential impacts of sub-surface hydrocarbon plumes on these organisms are critical to developing a more complete understanding of ocean-wide effects resulting from deep-sea oil spills. This work was designed to advance the understanding of hydrocarbon toxicity in several ecologically important deep-sea micronekton species using controlled laboratory exposures aimed at determining lethal threshold exposure levels. The current study confirmed the results previously determined for five deep-sea micronekton by measuring lethal threshold levels for phenanthrene between 81.2 and 277.5 µg/L. These results were used to calibrate the target lipid model and to calculate a critical target lipid body burden for each species. In addition, an oil solubility model was used to predict the acute toxicity of MC252 crude oil to vertically migrating crustaceans, Janicella spinacauda and Euphausiidae spp., and to compare the predictions with results of a 48-h constant exposure toxicity test with passive-dosing. Results confirmed that the tested deep-sea micronekton appear more sensitive than many other organisms when exposed to dissolved oil, but baseline stress complicated interpretation of results.


Assuntos
Poluição por Petróleo , Petróleo , Fenantrenos , Poluentes Químicos da Água , Animais , Ecossistema , Oceanos e Mares , Petróleo/análise , Petróleo/toxicidade , Poluição por Petróleo/análise , Fenantrenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
12.
Sci Total Environ ; 748: 141226, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818899

RESUMO

Hurricane Harvey (Harvey), a slow-moving storm, struck the Texas coast as a category 4 hurricane. Over the course of 53 days, the floodwaters of Harvey delivered 14 × 109 m3 of freshwater to Galveston Bay. This resulted in record flooding of Houston bayous and waterways, all of which drained into the San Jacinto Estuary (SJE,) with its main tributaries being Buffalo Bayou and the San Jacinto River. The lower SJE and lower Buffalo Bayou has experienced up to 3 m of land subsidence in the past 100 years and, as a result, prior to Hurricane Harvey, up to 2 m of sediment within the upper seabed contained an archive of high concentrations of Total Hg (HgT) and other particle-bound and porewater contaminants. Within the SJE, Harvey eroded at least 48 cm of the sediment column, resulting in the transport of an estimated 16.4 × 106 tons of sediment and at least 2 tons of Hg into Galveston Bay. This eroded sediment was replaced by a Harvey storm deposit of 7.73 × 106 tons of sediment and 0.96 tons within the SJE, mostly sourced from Buffalo Bayou. Considering that the frequency of slow-moving tropical cyclones capable of delivering devastating rainfall may be increasing, then one can expect that delivery of Hg and other contaminants from the archived sediment within urbanized estuaries will increase and that what happened during Harvey is a harbinger of what is to come.

13.
Mar Pollut Bull ; 151: 110804, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056599

RESUMO

Here, we report results from a 15-day mesocosm experiment examining changes in estimated oil equivalents (EOEs), n-alkanes (n-C10 to n-C35), polycyclic aromatic hydrocarbons (PAHs) and petroleum biomarkers. Water accommodated fractions (WAF) of oil and diluted chemically enhanced WAF (DCEWAF) were prepared and concentrations of oil residues determined on day 0, 3 and 15, respectively. Significant removals of n-alkane and PAHs were observed starting from day 3. The n-C17/pristane and n-C18/phytane ratios suggested that the n-alkane removal was due to biodegradation in the mesocosms. The ratios of C2-dibenzothiophenes/C2-phenanthrenes (D2/P2) and C3-dibenzothiophenes/C3-phenanthrenes (D3/P3) were found to be stable through the experiment. DCEWAF treatment had longer half-lives for most n-alkanes but shorter half-lives for most PAHs than the WAF treatment. Most petroleum biomarkers were stable throughout the experiment. However, depletion of TAS (tricyclic aromatic steroids) was observed on day 15 of DCEWAF treatment.


Assuntos
Ecossistema , Poluição por Petróleo , Petróleo , Tensoativos , Poluentes Químicos da Água , Hidrocarbonetos , Hidrocarbonetos Policíclicos Aromáticos
14.
PLoS One ; 15(1): e0228554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004358

RESUMO

Concerns on the timing and processes associated with petroleum degradation were raised after the use of Corexit during the Deepwater Horizon oil spill. There is a lack of understanding of the removal of oil associated with flocculate materials to the sediment. Mesocosm studies employing coastal and open-ocean seawater from the Gulf of Mexico were undertaken to examine changes in oil concentration and composition with time. The water accommodated fractions (WAF) and chemically enhanced WAF (CEWAF) produced using Macondo surrogate oil and Corexit were followed over 3-4 days in controlled environmental conditions. Environmental half-lives of estimated oil equivalents (EOE), polycyclic aromatic hydrocarbons (PAH), n-alkanes (C10-C35), isoprenoids pristane and phytane, and total petroleum hydrocarbons (TPH) were determined. EOE and PAH concentrations decreased exponentially following first-order decay rate kinetics. WAF, CEWAF and DCEWAF (a 10X CEWAF dilution) treatments half-lives ranged from 0.9 to 3.2 days for EOE and 0.5 to 3.3 days for PAH, agreeing with estimates from previous mesocosm and field studies. The aliphatic half-lives for CEWAF and DECWAF treatments ranged from 0.8 to 2.0 days, but no half-life for WAF could be calculated as concentrations were below the detection limits. Biodegradation occurred in all treatments based on the temporal decrease of the nC17/pristane and nC18/phytane ratios. The heterogeneity observed in all treatments was likely due to the hydrophobicity of oil and weathering processes occurring at different rates and times. The presence of dispersant did not dramatically change the half-lives of oil. Comparing degradation of oil alone as well as with dispersant present is critical to determine the fate and transport of these materials in the ocean.


Assuntos
Hidrocarbonetos/análise , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Golfo do México , Meia-Vida , Interações Hidrofóbicas e Hidrofílicas , Água do Mar/química
15.
Mar Pollut Bull ; 150: 110713, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31757392

RESUMO

The water-soluble compounds of oil (e.g. low molecular weight PAHs) dissolve as a function of their physicochemical properties and environmental conditions, while the non-soluble compounds exist as dispersed droplets. Both the chemical and physical form of oil will affect the biological response. We present data from a mesocosm study comparing the microbial response to the water-soluble fraction (WSF), versus a water-accommodated fraction of oil (WAF), which contains both dispersed and dissolved oil components. WAF and WSF contained similar concentrations of low molecular weight PAHs, but concentrations of 4- and 5-ring PAHs were higher in WAF compared to WSF. Microbial communities were significantly different between WSF and WAF treatments, primary productivity was reduced more in WSF than in WAF, and concentrations of transparent exopolymeric particles were highest in WSF and lowest in the controls. These differences highlight the importance of dosing strategy for mesocosm and toxicity tests.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Testes de Toxicidade , Água
16.
Sci Total Environ ; 693: 133626, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377363

RESUMO

Large amounts of oil containing mucous-like marine snow formed in surface waters adjacent to the Deepwater Horizon spill that was implicated in oil delivery to the seafloor. However, whether chemical dispersants that were used increased or decreased the oil incorporation and sedimentation efficiency, and how exopolymeric substances (EPS) are involved in this process remains unresolved. To investigate the microbial responses to oil and dispersants in different oceanic settings, indicated by EPS production, petro- and non-petro carbon sedimentation, four mesocosm (M) experiments were conducted: 1) nearshore seawater with a natural microbial consortia (M2); 2) offshore seawater with f/20 nutrients (M3); 3) coastal seawater with f/20 nutrients (M4); 4) nearshore seawater with a natural microbial consortia for a longer duration (M5). Four treatments were conducted in M2, M3 and M4 whereas only three in M5: 1) a water accommodated fraction of oil (WAF), 2) a chemically-enhanced WAF prepared with Corexit (CEWAF, not in M5), 3) a 10-fold diluted CEWAF (DCEWAF); and 4) controls. Overall, oil and dispersants input, nutrient and microbial biomass addition enhanced EPS production. Dispersant addition tended to induce the production of EPS with higher protein/carbohydrate (P/C) ratios, irrespective of oceanic regions. EPS produced in M4 was generally more hydrophobic than that produced in M3. The P/C ratio of EPS in both the aggregate and the colloidal fraction was a key factor that regulated oil contribution to sinking aggregates, based on the close correlation with %petro-carbon in these fractions. In the short term (4-5 days), both the petro and non-petro carbon sedimentation efficiencies showed decreasing trends when oil/dispersants were present. In comparison, in the longer-term (16 days), petro-carbon sedimentation efficiency was less influenced by dispersants, possibly due to biological and physicochemical changes of the components of the oil-EPS-mineral phase system, which cooperatively controlled the sinking velocities of the aggregates.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Sedimentos Geológicos/microbiologia , Petróleo/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Água do Mar/química , Tensoativos/química
17.
Heliyon ; 5(1): e01174, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30775571

RESUMO

Chemical characterization of the presence of oil in environmental samples are performed using methods of varying complexity. Extraction of samples with an organic solvent and analysis by fluorescence spectrometry has been shown to be a rapid and effective screening technique for petroleum in the environment. During experiments, rapid analysis of oil by fluorescence provides the opportunity for researchers to modify the experimental conditions in real time. Estimated Oil Equivalents (EOE) relies on the fluorescence measurement of the aromatic compounds to estimate the oil concentration. The present intercalibration study was designed to investigate whether different fluorometer instruments can reliably measure EOE and whether the results are intercomparable. Additionally, the need for extraction of oil compounds into an organic solvent was investigated. Three different fluorometers were used in three different laboratories: a Horiba Aqualog, a Turner Trilogy and a Shimadzu Spectrofluorophotometer RF-1501. Results from these different instruments showed excellent agreement for EOE determinations. A very high correlation was found between the EOE results obtained with Aqualog Horiba and Turner Trilogy (r2 = 0.9999), with no significant differences between the mean EOE results (t-test, p = 0.30), and the Aqualog Horiba and Shimadzu (r2 = 0.995) fluorometers, with no statistically difference between the EOE results obtained by the two instruments (p = 0.40).

18.
Environ Toxicol Chem ; 37(11): 2810-2819, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178489

RESUMO

The Chemical Response to Oil Spill: Ecological Effects Research Forum's water accommodated fraction procedure was compared with 2 alternative techniques in which crude oil was passively dosed from silicone tubing or O-rings. Fresh Macondo oil (MC252) was dosed at 30 mg/L using each approach to investigate oil dissolution kinetics, which was monitored by fluorometry as estimated oil equivalents (EOEs). Subsequent experiments with each dosing method were then conducted at multiple oil loadings. Following equilibration, test media were analytically characterized for polyaromatic hydrocarbons (PAHs) using gas chromatography (GC)-mass spectrometry and dissolved oil using biomimetic solid-phase microextraction (SPME). The results showed that equilibrium was achieved within 72 h for all methods. Measured PAH concentrations were compared with oil solubility model predictions of dissolved exposures. The concentration and composition of measured and predicted dissolved PAHs varied with oil loading and were consistent between dosing methods. Two-dimensional GC compositional data for this oil were then used to calculate dissolved toxic units for predicting MC252 oil acute toxicity across the expected range of species sensitivities. Predicted toxic units were nonlinear with loading and correlated to both EOE and biomimetic SPME. Passive dosing methods provide a practical strategy to deliver and maintain dissolved oil concentrations while avoiding the complicating role that droplets can introduce in exposure characterization and test interpretation. Environ Toxicol Chem 2018;37:2810-2819. © 2018 SETAC.


Assuntos
Fracionamento Químico/métodos , Exposição Ambiental/análise , Poluição por Petróleo/análise , Petróleo/toxicidade , Água/química , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Hidrocarbonetos Policíclicos Aromáticos/análise , Microextração em Fase Sólida , Solubilidade , Poluentes Químicos da Água/toxicidade
19.
PeerJ ; 6: e5387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128189

RESUMO

Satellite chlorophyll a (chl a) observations have repeatedly noted summertime phytoplankton blooms in the North Pacific subtropical gyre (NPSG), a region of open ocean that is far removed from any land-derived or Ekman upwelling nutrient sources. These blooms are dominated by N2-fixing diatom-cyanobacteria associations of the diatom genera Rhizosolenia Brightwell and Hemiaulus Ehrenberg. Their nitrogen fixing endosymbiont, Richelia intracellularis J.A. Schmidt, is hypothesized to be critical to the development of blooms in this nitrogen limited region. However, due to the remote location and unpredictable duration of the summer blooms, prolonged in situ observations are rare outside of the Station ALOHA time-series off of Hawai'i. In summer, 2015, a proof-of-concept mission using the autonomous vehicle, Honey Badger (Wave Glider SV2; Liquid Robotics, a Boeing company, Sunnyvale, CA, USA), collected near-surface (<20 m) observations in the NPSG using hydrographic, meteorological, optical, and imaging sensors designed to focus on phytoplankton abundance, distribution, and physiology of this bloom-forming region. Hemiaulus and Rhizosolenia cell abundance was determined using digital holography for the entire June-November mission. Honey Badger was not able to reach the 30°N subtropical front region where most of the satellite chl a blooms have been observed, but near-real time navigational control allowed it to transect two blooms near 25°N. The two taxa did not co-occur in large numbers, rather the blooms were dominated by either Hemiaulus or Rhizosolenia. The August 2-4, 2015 bloom was comprised of 96% Hemiaulus and the second bloom, August 15-17, 2015, was dominated by Rhizosolenia (75%). The holograms also imaged undisturbed, fragile Hemiaulus aggregates throughout the sampled area at ∼10 L-1. Aggregated Hemiaulus represented the entire observed population at times and had a widespread distribution independent of the summer export pulse, a dominant annual event suggested to be mediated by aggregate fluxes. Aggregate occurrence was not consistent with a density dependent formation mechanism and may represent a natural growth form in undisturbed conditions. The photosynthetic potential index (Fv:Fm) increased from ∼0.4 to ∼0.6 during both blooms indicating a robust, active phytoplankton community in the blooms. The diel pattern of Fv:Fm (nocturnal maximum; diurnal minimum) was consistent with macronutrient limitation throughout the mission with no evidence of Fe-limitation despite the presence of nitrogen fixing diatom-diazotroph assemblages. During the 5-month mission, Honey Badger covered ∼5,690 km (3,070 nautical miles), acquired 9,336 holograms, and reliably transmitted data onshore in near real-time. Software issues developed with the active fluorescence sensor that terminated measurements in early September. Although images were still useful at the end of the mission, fouling of the LISST-Holo optics was considerable, and appeared to be the most significant issue facing deployments of this duration.

20.
Front Microbiol ; 9: 689, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29696005

RESUMO

During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...